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Abstract

We calculate the kaon B-parameter, BK , in chiral perturbation theory for a partially quenched,

mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that

the resulting expression is similar to that in the continuum, and in fact has only two additional

unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector

only contribute to flavor-disconnected diagrams by generating an O(a2) shift to the masses of

taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which

shifts the tree-level value of BK by an amount of O(a2). This term, however, is not strictly due to

taste-breaking, and is therefore also present in the expression for BK for pure G-W lattice fermions.

We also present a numerical study of the mixed BK expression in order to demonstrate that both

discretization errors and finite volume effects are small and under control on the MILC improved

staggered lattices.
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I. INTRODUCTION

Lattice quantum chromodynamics allows nonperturbative calculations of low-energy

QCD quantities from first principles. Until recently, limited computing resources and the

inability to include quark loop effects have prevented lattice calculations from achieving

realistic results. In the past few years, however, lattice simulations of both light meson and

heavy-light meson quantities with dynamical staggered quarks have shown excellent numeri-

cal agreement with experimental results [1]. These have included both post-dictions, such as

the pion and kaon decay constants [2], and predictions, as in the case of the Bc meson mass

[3]. Such successes demonstrate that many of the systematic uncertainties associated with

lattice simulations are under control, and therefore give confidence that lattice simulations

can reliably calculate quantities that cannot be accessed experimentally. One of the simplest

quantities of phenomenological importance that can only be calculated using lattice QCD

is the kaon B-parameter, BK . Thus a precise measurement of BK is an important goal for

the lattice community.1

BK parameterizes the hadronic contribution to K0−K
0
mixing; it therefore plays a crucial

role in extracting information about the CKM matrix using measurements of the neutral

kaon system. In particular, the size of indirect CP violation in the neutral kaon system,

ǫK , when combined with a numerical value for BK , places an important constraint on the

apex of the CKM unitarity triangle [7, 8]. Because ǫK is well known experimentally [9], the

dominant source of error in this procedure is the uncertainty in the lattice determination

of BK . It is likely that new physics would give rise to CP-violating phases in addition to

that of the CKM matrix; such phases would manifest themselves as apparent inconsistencies

among different measurements of quantities which should be identical within the standard

CKM picture. Thus a precise determination of BK will help to constrain physics beyond

the standard model.

Because lattice simulations with staggered fermions can at present reach significantly

lighter quark masses than those with other standard discretizations [10, 11], calculations

of weak matrix elements using the available 2+1-flavor Asqtad staggered lattices appear

promising. Unfortunately, however, one pays a significant price for the computational speed

1 Promising calculations of BK including dynamical quark effects are currently in progress using both

improved staggered fermions [4, 5] and domain-wall fermions [6].
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of staggered simulations: each flavor of staggered quark comes in four species, or “tastes.”

In the continuum limit, these species become degenerate and can be removed by taking the

fourth root of the fermion determinant. In practice, however, one must take the fourth root

of the quark determinant during the lattice simulation in order to remove the extra tastes;

thus it is an open theoretical question whether or not one recovers QCD after taking the

continuum limit of fourth-rooted lattice simulations. Recently several papers have appeared

addressing the validity of the “fourth-root trick” [12, 13, 14, 15, 16]. Although the issue

has not yet been resolved, there are indications that the fourth root does not introduce

pathologies when taking the continuum limit of the lattice theory. We recommend a recent

review by Sharpe, Ref. [17], as a clear summary of the current status of the fourth-root

trick. In this paper we assume the validity of the fourth-root trick. Even working under

this assumption, however, the additional tastes introduce complications to staggered lattice

simulations. The degeneracy among the four tastes is broken by the nonzero lattice spacing,

a, and results in discretization errors of O(a2). Thus one must use functional forms calculated

in staggered chiral perturbation theory (SχPT), in which taste-violating effects are explicit,

to correctly extrapolate staggered lattice data [18, 19, 20, 21].

Staggered chiral perturbation theory has been used to successfully fit quantities such as

fπ and fD, for which the SχPT expressions are simple and taste-symmetry breaking pri-

marily enters through additive corrections to the pion masses inside loops [20, 22]. In the

case of BK , however, the additional tastes also make the matching procedure between the

lattice ∆S = 2 effective four-fermion operator and the desired continuum operator more

difficult. The latticized version of the continuum BK operator mixes with all other lattice

operators that are in the same representation of the staggered lattice symmetry group [23]

– including those with different tastes than the valence mesons. Current staggered calcula-

tions only account for mixing with operators of the correct taste and only to 1-loop order in

αS; this results in a 20% uncertainty in BK [4]. In order to achieve a precise determination

of BK with staggered fermions, one must either perform the lattice-to-continuum matching

nonperturbatively using a method such as that of the Rome-Southampton group [24] or one

must include the effects of the extra operators in the SχPT expression for BK [25]. Thus

far the large number of staggered operators has prevented matching calculations beyond

1-loop order [26, 27], although nonperturbative matching including all relevant staggered

operators is, in principle, possible. The effects of this truncated lattice-to-continuum opera-
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tor matching can be included in an extended version of SχPT, but the resulting expression

for BK has many undetermined fit parameters, only a few of which are already known from

measurements of other quantities. Therefore use of this expression may prove just as difficult

as implementing fully nonperturbative matching.

The calculation of weak matrix elements such as BK with Ginsparg-Wilson (G-W) quarks

[28], on the other hand, is theoretically much cleaner than that with staggered quarks. This

is because in the massless limit, G-W quarks possess an exact chiral symmetry on the

lattice and do not occur in multiple species. Although in practice, lattice simulations use

approximate G-W fermions, the degree to which chiral symmetry is broken in simulations

can be controlled either by the length of the fifth dimension in the case of domain-wall

quarks [29, 30] or through the degree to which the overlap operator is realized in the case

of overlap quarks [31, 32, 33]. Consequently, while the ∆S = 2 lattice operator still mixes

with wrong-chirality operators, there are significantly fewer operators than in the staggered

case, and nonperturbative renormalization can be used in the determination of BK . As an

additional benefit, the approximate chiral symmetry also ensures that the appropriate chiral

perturbation theory expression for use in the extrapolation of BK lattice data is continuum-

like at next-to-leading order (NLO). Lattice simulations with G-W fermions, however, are

10 to 100 times more computationally expensive than those with staggered fermions with

comparable masses and lattice spacing, and thus are unfortunately not yet practical for

realizing light dynamical quark masses.

A computationally affordable compromise is therefore to calculate correlation functions

with Ginsparg-Wilson valence quarks on a background of dynamical staggered gauge con-

figurations. This “mixed action” approach combines the advantages of staggered and G-W

fermions while not suffering from their major disadvantages, and is well-suited to the cal-

culation of the weak matrix element BK . By using staggered sea quarks and G-W valence

quarks one can better approach the chiral regime in the sea sector while minimizing operator

mixing and allowing the use of nonperturbative renormalization. Additionally, because the

MILC staggered lattices with 2+1 flavors of dynamical quarks are publicly available and

offer a number of quark masses and lattice spacings [10, 11], one can perform unquenched

three-flavor simulations at the same cost as quenched G-W simulations. Mixed action simu-

lations have already been successfully used to study quantities of interest to nuclear physics

[34, 35], thus we expect that a similar method can be used to calculate BK .
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One might be concerned that the use of a mixed action could introduce new theoretical

complications into the lattice determination of BK . Although the mixed staggered sea, G-W

valence lattice theory reduces to QCD in the continuum limit, at nonzero lattice spacing,

it is manifestly unphysical in that it violates unitarity. Thus, in order to extract physical

QCD quantities from mixed action simulations, it is essential that one can correctly describe

and remove contributions due to unphysical mixed action effects from quantities such as BK

using the appropriate lattice chiral perturbation theory. It has not been rigorously proven

that the mixed action chiral perturbation theory developed in [36] is the correct chiral

effective theory for mixed G-W, staggered simulations in which the fourth-root of the quark

determinant is taken in the sea sector. Nevertheless, Ref. [12] showed that, given a few

plausible assumptions, staggered chiral perturbation theory is the correct chiral effective

theory for describing the pseudo-Goldstone boson sector of rooted staggered simulations. A

similar line of reasoning should hold for mixed action chiral perturbation theory. Assuming

so, mixed action lattice simulations can be used to correctly calculate quantities involving

pseudo-Goldstone bosons (such as BK) in QCD. More complicated quantities, however,

should be considered on a case-by-case basis.

In this paper we calculate BK in χPT for a lattice theory with G-W valence quarks and

staggered sea quarks. We present results for a “1+1+1” theory in which mu 6= md 6= ms

in the sea sector, for a “2+1” theory in which mu = md 6= ms in the sea sector, and for

a “full QCD”-like expression in which we tune the valence-valence meson masses equal to

the taste-singlet sea-sea meson masses. (We emphasize, however, that these expressions

only truly reduce to QCD when msea = mvalence and the lattice spacing a → 0.) These

expressions will be necessary for the correct chiral and continuum extrapolation of mixed-

action BK lattice data. We find that the expression for BK in mixed action χPT has only

two more parameters than in the continuum. The first coefficient multiplies an analytic

term which shifts the tree-level value of BK by an amount of O(a2); this term is also present

in the case of pure G-W lattice fermions. The second new parameter shifts the mass of

the taste-singlet sea-sea meson (which only appears inside loop diagrams) by an amount of

O(a2). This mass-splitting has already been separately determined, however, in the MILC

spectrum calculations so we do not consider it to be an unknown fit parameter. Therefore, in

practice, the chiral and continuum extrapolation of mixed action BK lattice data should be
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no more complicated than that of domain-wall lattice data. A numerical analysis using the

taste-breaking parameters measured on the MILC coarse lattices (a ≈ 0.125 fm) shows that

the size of non-analytic discretization errors should be less than a percent of the continuum

value of BK over the relevant extrapolation range. In addition, we find that finite volume

effects in BK are also small, and are of O(1%) for the lightest pion mass on the MILC coarse

ensemble.

This paper is organized as follows. We review mixed action chiral perturbation theory

(MAχPT) in Sec. II. In Sec. III we calculate BK to next-to-leading order in MAχPT. This

is divided into four subsections: we first present the spurion analysis necessary to map the

quark-level BK operator onto an operator in the chiral effective theory in Sec. IIIA, calculate

the 1-loop contributions to BK at NLO in Sec. III B, determine the analytic contributions

to BK at NLO in Sec. IIIC, and finally present the complete expressions for BK at NLO

in MAχPT in Sec. IIID. Next, in Sec. IV, we estimate the numerical size of both taste-

symmetry breaking contributions and finite volume effects on the existing MILC ensembles

using the resulting mixed action χPT formulae. Finally, we conclude in Sec. V.

II. MIXED ACTION CHIRAL PERTURBATION THEORY

In this section we review the leading-order mixed action chiral Lagrangian, first deter-

mined in Ref. [36], and discuss some of its physical consequences for the pseudo-Goldstone

boson sector.

We consider a partially quenched theory with Nval Ginsparg-Wilson valence quarks and

Nsea staggered sea quarks. Each staggered sea quark comes in four tastes, and each G-W

valence quark has a corresponding bosonic ghost partner to cancel its contribution to loop

diagrams. For example, in the case Nval = 2 and Nsea = 3 , the quark mass matrix is given

by

M = diag(mu, mu, mu, mu, md, md, md, md, ms, ms, ms, ms︸ ︷︷ ︸
sea

, mx, my︸ ︷︷ ︸
valence

, mx, my︸ ︷︷ ︸
ghost

), (1)

where we label the dynamical quarks by u, d, and s and the valence quarks by x and y. Near

the chiral and continuum limits, the mixed action theory has an approximate SU(4Nsea +

Nval|Nval)L ⊗ SU(4Nsea + Nval|Nval)R graded chiral symmetry. In analogy with QCD, we
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assume that chiral symmetry spontaneously breaks to its vector subgroup,

SU(4Nsea + Nval|Nval)L ⊗ SU(4Nsea + Nval|Nval)R
SSB
−−→ SU(4Nsea + Nval|Nval)V , (2)

and gives rise to (4Nsea + 2Nval)
2 − 1 pseudo-Goldstone bosons (PGBs). These PGBs can

be packaged in an SU(4Nsea + Nval|Nval) matrix:

Σ = exp

(
2iΦ

f

)
, Φ =




U π+ K+ Qux Quy · · · · · ·

π− D K0 Qdx Qdy · · · · · ·

K− K
0

S Qsx Qsy · · · · · ·

Q†
ux Q†

dx Q†
sx X P+ R†

exx R†
eyx

Q†
uy Q†

dy Q†
sy P− Y R†

exy R†
eyy

· · · · · · · · · Rexx Rexy X̃ P̃+

· · · · · · · · · Reyx Reyy P̃− Ỹ




, (3)

where f is normalized such that fπ ≈ 131 MeV. The upper-left block of Φ contains sea-sea

PGBs, each of which comes in sixteen tastes. For example,

U =

16∑

b=1

Ub

Tb

2
, (4)

where the Euclidean gamma matrices

Tb = {ξ5, iξµξ5, iξµξν , ξµ, ξI} (5)

are the generators of the continuum SU(4) taste symmetry (ξI is the 4× 4 identity matrix).

The fields in the central block are the flavor-charged (P+ and P−) and flavor-neutral (X and

Y ) valence-valence PGBs, while those in the lower-right block with tildes are the analogous

PGBs composed of only ghost quarks. Finally, the off-diagonal blocks contain “mixed”

PGBs: those labelled by R’s are composed of one valence and one ghost quark, while those

labelled by Q’s are composed of one valence and one sea quark. We do not show the mixed

ghost-sea PGBs explicitly; their locations are indicated by ellipses.

Under chiral symmetry transformations, Σ transforms as

Σ −→ L Σ R†, L, R ∈ SU(4Nsea + Nval|Nval)L,R. (6)

The standard mixed action chiral perturbation theory power-counting scheme is

p2
PGB/Λ2

χ ∼ mq/ΛQCD ∼ a2Λ2
QCD , (7)
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so the lowest-order, O(p2
PGB, mq, a

2), mixed action chiral Lagrangian is

Ļ =
f 2

8
Str

(
∂µΣ ∂µΣ†

)
−

µf 2

4
Str

(
ΣM † + MΣ†

)
+ a2 (U̧S + U̧′

S + U̧V ) , (8)

where Str indicates a graded supertrace over both flavor and taste indices and µ is an

undetermined dimensionful parameter of O(ΛQCD). The leading-order expression for the

mass-squared of a valence-valence PGB is identical to that of the continuum because the

chiral symmetry of the valence sector prevents an additive shift due to lattice spacing effects:

m2
xy = µ(mx + my). (9)

US and U ′
S comprise the well-known staggered potential and come from taste-symmetry

breaking in the sea quark sector [19]. US splits the tree-level masses of the sea-sea PGBs

into degenerate groups:

m2
ff ′,t = µ(mf + mf ′) + a2∆t, (10)

where ∆t is different for each of the SO(4)-taste irreps: P , V , A, T , I. In particular, ∆P = 0

because the taste-pseudoscalar sea-sea PGB is a true lattice Goldstone boson. The mixed

action Lagrangian contains only one new operator, and thus one new low-energy constant,

as compared to the staggered chiral Lagrangian:

U̧V = −CMix Str
(
τ3Στ3Σ

†
)
, (11)

where

τ3 = P̧sea − P̧val = diag(Isea ⊗ Itaste,−Ival,−Ival). (12)

This operator links the valence and sea sectors and generates a shift in the mass-squared of

a mixed valence-sea PGB:

m2
fx = µ(mf + mx) + a2∆Mix, ∆Mix =

16CMix

f 2
. (13)

Although the parameter ∆Mix has not yet been calculated in mixed action lattice simulations,

it can, in principle, be determined by calculating the mass of a mixed valence-sea meson on

the lattice. As in any partially quenched theory, the mixed action theory contains flavor-

neutral quark-disconnected hairpin propagators which have double pole contributions. The

only flavor-neutral propagators that appear in the expression for BK are those with two

valence quarks; these have the following form:

GXY (q) =
δXY

q2 + m2
X

+ DXY (q), (14)
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where

DXY (q) = −
1

3

1

(q2 + m2
X)(q2 + m2

Y )

(q2 + m2
UI

)(q2 + m2
DI

)(q2 + m2
SI

)

(q2 + m2
π0

I

)(q2 + m2
ηI

)
(15)

is the disconnected (hairpin) contribution. Note that the sea-sea PGBs in the above ex-

pression are all taste singlets because the valence quarks do not transform under the taste

symmetry.

III. BK AT NLO IN MIXED ACTION CHIRAL PERTURBATION THEORY

In this section we outline the calculation of BK in mixed action χPT. We divide it into

four subsections. We first determine the operators that contribute to BK in the mixed

action chiral effective theory using a spurion analysis in Sec. IIIA. In Sec. III B we outline

the 1-loop calculation of BK , and in Sec. IIIC we follow this up with an enumeration of the

corresponding analytic terms. Finally, the complete NLO results are presented in Sec. IIID.

A. BK Spurion Analysis

The spurion analysis for BK in the mixed action case is similar to that in the continuum

[25, 37]; we will point out differences when they occur.

In continuum QCD, BK is defined as a ratio of matrix elements:

BK ≡
MK

Mvac
. (16)

The numerator in the above expression measures the hadronic contribution to neutral kaon

mixing:

MK = 〈K
0
|OK |K0〉, (17)

OK = [sγµ(1 − γ5)d][sγµ(1 − γ5)d], (18)

where we have dropped color indices in OK because both color contractions give rise to the

same operators in the chiral effective theory. OK is an electroweak operator which transforms

as a (27L, 1R) under the standard continuum chiral symmetry group. The denominator in

Eq. (16) is the same matrix element as in the numerator evaluated in the vacuum saturation

approximation:

Mvac
K =

8

3
〈K

0
|sγµ(1 − γ5)d|0〉〈0|sγµ(1 − γ5)d|K

0〉, (19)
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so that BK is normalized to be of O(1).

In the mixed action theory, we define BK in an analogous manner, except that both the

external kaons and the operator OK must now be composed of valence quarks:

Olat
K = [yγµ(1 − γ5)x][yγµ(1 − γ5)x]. (20)

We can rewrite this operator as follows:

Olat
K = 4[qL(γµ ⊗ Pyx)qL][qL(γµ ⊗ Pyx)qL] , (21)

where the subscript “L” on the quark field indicates the left-handed projection and the

matrix Pyx is a 4Nsea + 2Nval matrix in flavor space that projects out the yx component

of each quark bilinear ([Pyx]ij = δi,14δj,13 for Nsea = 3, Nval = 2). If we promote Pyx to

a spurion field, FK , which can transform under the mixed action chiral symmetry group

SU(4Nsea + Nval|Nval)L ⊗ SU(4Nsea + Nval|Nval)R, then FK must transform as

FK → LFKL† , (22)

so that Eq. (21) remains invariant. One cannot build a chirally invariant operator out of

Σ and the spurion field FK without derivatives, but one can build two such operators at

O(p2
PGB):

∑

µ

Str[Σ∂µΣ†FK ]Str[Σ∂µΣ†FK ], (23)

∑

µ

Str[Σ∂µΣ†FKΣ∂µΣ†FK ]. (24)

It turns out however, that these two operators are equivalent when one demotes the spurion

FK to the matrix Pyx. Thus we are left with a single chiral operator:

Oχ
K =

∑

µ

Str[Σ∂µΣ†Pyx]Str[Σ∂µΣ†Pyx] . (25)

This operator is identical in form to the continuum BK operator [37], but Σ contains more

fields and the standard trace has been promoted to a supertrace.

Because this operator is of O(p2
PGB), operators of O(mq) and O(a2), if present, could

also potentially contribute at the same order in χPT. Recall that the quark mass matrix,

when promoted to a spurion field, must transform as M → LMR†; thus we cannot form a

chiral operator with a single power of M and two powers of FK that is invariant under the
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chiral symmetry. This is, of course, to be expected because the chiral symmetry of the G-W

valence sector and the U(1)A symmetry of the staggered sea sector are sufficient to prevent

any new operators involving the quark mass matrix at leading order in the chiral expansion.

New operators of O(a2) that are not present in the continuum can also potentially appear

and contribute to BK . As discussed in Ref. [25], such operators arise in two distinct ways:

mixing with higher-dimension operators and insertions of four-fermion operators from the

action. We demonstrate that these operators do not introduce taste-symmetry breaking,

and therefore give rise to the same kinds of analytic terms as in the pure G-W case.

Although the BK lattice operator is dimension 6, at the level of the Symanzik effective

theory, it maps onto all continuum effective operators of dimensions 6 and higher that re-

spect the same lattice symmetries. Operators of dimension 7 and 8 are explicitly suppressed

relative to the dimension 6 BK Symanzik effective operator by powers of a and a2, respec-

tively, and can therefore be mapped onto chiral operators that may contribute to BK at

NLO. Because, however, the lattice symmetry group includes taste transformations under

which the valence quarks are singlets, only dimension 7 and 8 operators composed of four

valence quarks can possibly respect the same lattice symmetries as the BK lattice operator.

Moreover, the chiral symmetry of the G-W valence quarks in the BK operator prohibits

strictly valence dimension 7 four-fermion operators. Thus we need only consider dimension

8 Symanzik effective operators for the BK operator which contain four valence quarks. For-

tunately we need not enumerate all possible dimension 8 quark-level operators of O(a2p2)

and O(a2m2) in order to determine all possible chiral operators of O(a2p2
PGB) and O(a2mq)

onto which they map. Because the BK lattice operator has a L-L chiral structure, and

chiral symmetry is respected by the valence sector of the lattice theory, it can only mix with

higher-dimension operators that also have a L-L structure. Consequently, these dimension 8

four-fermion operators will generate the same spurions as the dimension 6 BK operator, and

thus lead to the same chiral operator as in Eq. (25), but with an additional undetermined

coefficient of O(a2). In general, this new coefficient just produces an unknown shift of O(a2)

to the original O(1) coefficient of the Oχ
K . Thus it will not lead to any new functional forms

in the expression for BK in MAχPT, only additional contributions from the leading-order

BK operator that of are higher-order in the MAχPT power-counting. In particular, at NLO

in mixed action χPT, it will simply lead to an O(a2) correction to the tree-level value of BK ,

which we can absorb into an analytic term. We emphasize that, although this contribution
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is proportional to a2, it is not due to taste-symmetry breaking in the staggered sea sector.

Because it arises from strictly valence four-fermion operators, it is also present in simulations

with pure G-W lattice fermions.

New operators that contribute to BK at O(a2) can also be produced by inserting a

dimension 6 O(a2) operator from the Symanzik action into the BK four-fermion operator.

A method for combining four-fermion operators at the chiral level was developed in Ref. [21]

for the purpose of determining the NLO staggered chiral Lagrangian. This method was

later used in Ref. [25] to enumerate the operators that arise from insertions of the staggered

action that contribute to BK with both staggered sea and valence quarks. In the case of

the mixed action theory, we must consider insertions of four-fermion operators with only sea

quarks, four-fermion operators with only valence quarks, and four-fermion operators with

both sea and valence quarks.

Let us first consider insertions of operators with only sea quarks, as all of the work has

essentially been done in Ref [25]. Staggered four-fermion operators can be made invariant

under arbitrary chiral symmetry transformations by introducing six pairs of spurion fields:

FL ⊗ FL → LFLL† ⊗ LFLL†, FR ⊗ FR → RFRR† ⊗ RFRR†,

FL ⊗ FR → LFLL† ⊗ RFRR†, F̃L ⊗ F̃L → LF̃LR† ⊗ LF̃LR†,

F̃R ⊗ F̃R → RF̃RL† ⊗ RF̃RL†, F̃L ⊗ F̃R → LF̃LR† ⊗ RF̃RL†, (26)

where the two separate spurions in each pair correspond to the two separate quark bilinears

in each four-fermion operator. The taste-breaking spurions in Eq. (26) can be combined

with the BK spurion FK , which transforms as in Eq. (22), to produce all of the generic

chiral structures in Table I.2 In order to turn these structures into operators that contribute

to BK , one must ultimately replace the spurion fields with constant values. In the case of

the staggered theory, because the constituent staggered bilinears may have nontrivial tastes,

these spurions become taste matrices, ξi ⊗ ξi, which are diagonal in flavor space. In the

case of the mixed action theory, because only the staggered sea quarks carry taste quantum

numbers, these spurions become taste matrices multiplied by projectors onto the sea sector,

i.e. ξi⊗ξi → ξiPsea⊗ξiPsea. For example, consider a particular operator in the mixed action

2 Note this table is simply the first column of Table III in Ref. [25].
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Generic Chiral Structure

Str(FKΣFRΣ†FKΣF ′
RΣ†) + p.c.

Str(FKΣFRΣ†)Str(FKΣFRΣ†) + p.c.

Str(FK F̃LΣ†FKΣF̃R) + p.c.

Str(FK F̃LΣ†)Str(FKΣF̃R) + p.c.

Str(FK F̃LΣ†FK F̃LΣ†) + p.c.

Str(FK F̃LΣ†)Str(FK F̃LΣ†) + p.c.

TABLE I: Mesonic operators corresponding to insertions of four-fermion operators from the

Symanzik effective action; these generic structures apply to operators with only sea quarks, to

those with only valence quarks, and to mixed operators with both sea and valence quarks. FK

comes from the BK quark-level operator and will ultimately be set equal to the projector Pyx. The

remaining spurions come from four-fermion operators, and must be set equal to different matrices

depending upon the four-fermion operator under consideration; the specific details are discussed

in the text. The notation “p.c.” indicates the parity-conjugate of the previous operator.

theory coming from the first spurion combination in Table I:

Str(FRΣFKΣ†FRΣFKΣ†) + p.c.
sea-sea f-f. op.
−−−−−−−−→ Str(ξ5PseaΣPyxΣ

†ξ5PseaΣPyxΣ
†) + p.c. (27)

Because this operator is already of O(a2), it can only contribute to BK at NLO through

tree-level diagrams; thus it can only contain two pion fields, which are insufficient to separate

all of the projectors onto the sea sector from all of the projectors on the valence sector. In

fact, it is easy to show that none of the chiral operators arising from insertions of staggered

four-fermion operators actually contribute to BK at NLO (although they may at higher

orders) because their contributions vanish identically due to the fact that PseaPyx = 0. Thus

we do not show all of their expressions here.

We next consider insertions of mixed four-fermion operators in which one quark bilinear

contains staggered sea quarks and the other contains GW valence quarks. Such mixed

operators can be made invariant under arbitrary chiral symmetry transformations with the

following four pairs of spurion fields [36]:

FL ⊗ FL → LFLL† ⊗ LFLL†, FR ⊗ FR → RFRR† ⊗ RFRR†,

FL ⊗ FR → LFLL† ⊗ RFRR†, FR ⊗ FL → RFRR† ⊗ LFLL†, (28)
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where, in this case, we have distinguished between the first spurion in the pair (which

corresponds to the sea bilinear) and the second spurion (which corresponds to the valence

bilinear). This is necessary because the sea spurion will ultimately be replaced with a

projector onto the sea sector, while the valence spurion will become a projector on the

valence sector. By comparing Eqs. (28) and (26), one can see that the mixed spurion fields

are actually a subset of the staggered spurion fields, although they must be replaced with

different matrices in order to produce operators that contribute to BK . Consequently, the

only possible combinations of the BK spurion with the mixed spurions are already given

in the upper panel of Table I. Although the mixed case is clearly similar to the staggered

one, let us nevertheless consider the example of the operator arising from the first generic

structure in Table I:

Str(FRΣFKΣ†FRΣFKΣ†) + p.c.
sea-val f-f. op.
−−−−−−−−→ Str(PseaΣPyxΣ

†PvalΣPyxΣ
†) + p.c. (29)

This operator does not contribute to BK at NLO for the same reasons as the previous

example, and neither does the other operator arising from insertions of mixed valence-sea

four-fermion operators.

Finally, we consider insertions of purely valence four-fermion operators. These operators

lead to the same spurion fields as the mixed operators [36], and thus to the same chiral

forms in the upper panel of Table I. The only difference is that both spurion fields must

be replaced with projectors onto the valence sector. Consequently, as in the case of the

previous example, the new chiral operators do not contribute to BK at NLO. In summary,

although many MAχPT operators of O(a2) arise from insertions of four-fermion operators

in the Symanzik effective action, none of them contribute to BK at NLO for the mixed G-W,

staggered lattice theory.

The previous analysis holds for G-W valence quarks, which have perfect chiral symmetry.

On the lattice however, G-W quarks are often approximated as domain-wall quarks, which

have a small amount of residual chiral symmetry breaking due to the finite size of the fifth

dimension. This chiral symmetry breaking is parameterized by the residual mass, mres,

which is a measure of how far the left- and right-handed components of the quarks extend

into the fifth dimension. These effects can be readily added to the chiral theory, as seen in

Refs. [38, 39], by adding the following mass-like term to the chiral Lagrangian:

∆LDWF = −
µf 2

4
Str

(
ΣΩ† + ΩΣ†

)
, (30)
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where Ω is a spurion which transforms as the mass matrix transforms, and in the end we

set Ω = mres × I. This leads to the familiar expression for the tree-level mass of a PGB

composed of two domain-wall quarks:

m2
xy = µ(mx + my + 2mres). (31)

Clearly this term will not contribute at leading order to BK , since the Ω spurion transforms

in the same manner as the mass spurion, and the mass term did not contribute at this order.

Consequently, one may simply shift the valence quark masses by mval → mval + mres in the

results of this paper to transform them into expressions that apply to lattice simulations

with domain-wall valence quarks and staggered sea quarks.3

Finally we must consider the fact that, while one constructs a lattice operator to corre-

spond to a continuum operator with a particular spin, once on the lattice, this operator is

allowed to mix due to gluon exchange with operators that correspond to other continuum

spin structures. This comes from the fact that the symmetry group on the lattice is not the

SO(4) group of Euclidean rotations: it has been broken down to the subgroup of hypercubic

rotations. Lattice operator mixing patterns can become especially complicated when one

introduces staggered quarks because now the desired lattice operator can not only mix with

other operators with incorrect spins, but also those with incorrect tastes. Fortunately, in

the mixed action theory that we consider here, the symmetry of the G-W valence sector

is sufficient to prevent mixing between the lattice BK operator and new operators with

nontrivial taste structure. Because the valence quarks in the BK four-fermion operator do

not transform under taste symmetry, the BK operator is clearly not in the same lattice

symmetry irrep as any taste-violating four-fermion operators. Furthermore, in the case of

pure G-W valence quarks, the BK operator cannot mix with operators of the wrong chiral-

ity. In realistic simulations with domain-wall valence quarks, however, the desired lattice

BK operator with spin structure V V + AA mixes with four other operators which do not

have the same V V + AA spin structure (TT , V V − AA, SS + PP , and SS − PP ). This

3 In applying χPT expressions to lattice simulations with domain-wall valence quarks and staggered sea

quarks, it is also important to remember that the domain-wall valence and staggered sea quark masses

are renormalized differently. Consequently, if one wishes to use the bare domain-wall lattice Dirac mass

parameter and the bare AsqTad staggered lattice mass in mixed action χPT expressions, one must allow

the parameter µ which relates the quark masses to the pion mass-squared to be different in the valence

and sea sectors.
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contamination though is suppressed by two factors of the residual mass [40], and the effect

is small, so long as the residual mass is small. Although the effect may be small, it could be

non-negligible, but then it can be removed nonperturbatively using the standard method of

Rome-Southampton [24].

To summarize, the result of this spurion analysis is that the leading order operator that

contributes to BK in the mixed action case is simply the continuum operator naively gener-

alized to the mixed action theory. This is simpler than the full staggered case [25], in which

many new operators appeared at leading order due to taste-symmetry breaking. Neverthe-

less, taste-symmetry breaking will still enter the mixed action calculation of BK through

the masses of PGBs in loop diagrams. In addition, taste-breaking operators will generate

operators of next-to-leading order (NLO) in the chiral effective theory that will contribute

to analytic terms; we will discuss these in Sec. IIIC.

B. Contribution of BK at 1-Loop

Recall from Eq (16) that the kaon B-parameter is defined as the ratio MK/Mvac
K . At

tree-level,

(
MK

Mvac
K

)LO

≡ B0. (32)

Because all higher-order contributions to BK are identically zero in the limit of massless

quarks, this expression defines the B-parameter in the chiral and continuum limits.

At 1-loop, the K0 − K
0

matrix element receives contributions from the diagrams shown

in Fig. 1, where we have specified the location of each of the two left-handed currents in the

chiral operator Oχ
K .4 This factorization of the operator is useful because the calculation of

the kaon matrix element can then be separated into two pieces, the 1-loop corrections to fK

and the 1-loop corrections to BK in which we are interested. In terms of the contributions

from the diagrams in Figure 1, the BK matrix element can be written as

MK =
8

3
B0f

2m2
xy{1 + X[Figs. 1(b)-(c)]} + X ′[Figs. 1(d)-(f)]}, (33)

4 Note that this factorization is only possible at leading order. At higher orders, BK receives contributions

from operators which are not simply products of left-handed currents.
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(a) (b) (c)

(d) (e) (f)

FIG. 1: Tree-level and 1-loop contributions to MK . The circle represents a vertex from the LO

staggered chiral Lagrangian. Each square represents an insertion of one of the two left-handed

currents in Oχ
K and “changes” the quark flavor from d ↔ s.

where X and X ′ indicate the results of specific diagrams and m2
xy is the 1-loop kaon mass

squared. At 1-loop, the form of Mvac
K is simple:

Mvac
K =

8

3
m2

xyf
2
xy, (34)

where m2
xy and fxy are the 1-loop corrected values. It is clear that diagrams (b) and (c) in

Fig. 1 factorize – the left-half of each diagram is the 1-loop correction to fK , while the right

half is just f at tree-level. Mathematically,

X[Figs. 1(b)-(c)] = 2
δfNLO

f
, (35)

where the factor of two comes from the fact that the loop can appear on either leg. Diagrams

1(b) and 1(c) therefore turn the leading order f 2 into the 1-loop f 2
xy in Eq. (33):

MK =
8

3
B0f

2
xym

2
xy + X ′[Figs. 1(d)-(f)], (36)

such that BK at one loop only depends on diagrams 1(d)-(f):

B1−loop
K = B0 +

3

8

X ′[Figs. 1(d)-(f)]

f 2
xym

2
xy

. (37)

Figure 2 shows the quark flow diagrams that correspond to the meson diagrams in

Figs. 1(d)-(f). It is interesting to note that the only place where sea quarks appear in

these diagrams is in the disconnected hairpin propagators of diagrams 2(b) and (c). In
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particular, there are no contributions from mixed mesons made of one sea and one valence

quark, so the new parameter in the mixed-action chiral Lagrangian, ∆Mix, does not appear

in BK to 1-loop.5

We now proceed to calculate the 1-loop contributions to BK from Figure 2. The connected

diagrams, 2(a), (d), and (e), combine to give the result6

Mconn =
B0

6π2

∫
d4q

(2π)4

[
2m4

xy

q2 + m2
xy

−
m2

X + m2
xy

q2 + m2
X

−
m2

Y + m2
xy

q2 + m2
Y

]
. (38)

The contribution from the disconnected diagrams, 2(b) and (c), is somewhat more tedious

to evaluate because of the double poles in the hairpin propagators:

Mdisc =
2

3
B0

∫
d4q

(2π)4
(m2

xy + q2)
{
DI

xx(q) + DI
yy(q) − 2DI

xy(q)
}

, (39)

where DI
ij is the taste-singlet disconnected propagator of Eq (15). Making use of the identity

[25],

Dxx + Dyy − 2Dxy = (m2
X − m2

Y )2 ∂

∂m2
X

∂

∂m2
Y

{Dxy}, (40)

we get the following result for the disconnected piece in the “1+1+1” partially quenched

theory:

MPQ,1+1+1
disc =

B0

48π2
(m2

X − m2
Y )2 ∂

∂m2
X

∂

∂m2
Y

{∫
d4q

(2π)4

∑

j

(m2
xy + m2

j )

(q2 + m2
j )

R
[4,3]
j ({M

[4]
XY,I}; {µ

[3]
I })

}
,

(41)

where R
[4,3]
j is the residue arising from the double pole in the disconnected propagator; R

[4,3]
j ,

{M
[4]
XY,I}, and {µ

[3]
I } are defined in Sec. IIID.

To get the full expression for BK at NLO, one must combine the 1-loop contributions

with analytic terms that arise from tree-level matrix elements of higher-order operators:

BPQ
K = B0 +

3

8

(
Mconn + Mdisc

f 2
xym

2
xy

+ analytic terms

)
. (42)

We discuss the analytic terms in the following subsection.

5 This cancellation of chiral logarithms containing the parameter ∆Mix is not unique to BK . It also occurs

in other mixed action chiral perturbation theory expressions when they are written in terms of 1-loop

PGB masses and decay constants (rather than bare parameters), such as in the case of the I = 2 ππ

scattering amplitude [41].
6 We note that, although all of the integrals in this section are divergent in four dimensions, one can choose

a suitable regulator to make them finite before their evaluation; this regulator can then be removed after

the results have been renormalized.

18



(a) (b) (c)

(d) (e)

FIG. 2: Quark flow diagram contributions to BK at 1-loop. One external meson is a K
0

and the

other is a K0. The two boxes represent an insertion of the BK operator. Each box “changes” the

valence quark flavor from d ↔ s. Diagrams (a)–(c) contribute to Fig. 1(d), diagram (d) contributes

to Fig. 1(e), and diagram (e) contributes to Fig. 1(f).

C. Analytic contributions to BK at NLO

Next-to-leading order analytic contributions to BK come from tree-level matrix elements

of NLO operators. In MAχPT, such terms can come from operators of the following order

in the power-counting scheme:

O(p4
PGB), O(a2p2

PGB), O(a4), O(m2
q), O(p2

PGBmq), O(a2mq). (43)

There are many such operators in the mixed action chiral Lagrangian, however, since it is

not necessary to separate them in fits to numerical lattice data, we do not enumerate them

all here. Instead we use symmetry arguments to restrict the possible linearly independent

terms as in Ref. [25].

First we discuss those analytic contributions which are easiest to determine. One can im-

mediately rule out contributions from operators of O(p4
PGB) because such operators contain

four derivatives, but tree-level matrix elements contain only two fields upon which they can

act. One can also rule out contributions from O(a4) operators because, at tree-level, they

would produce terms without powers of masses in them, and the chiral symmetry of the

valence sector requires that the kaon matrix element vanishes in the chiral limit. Finally, all

contributions from O(a2p2
PGB) operators must be proportional to m2

xy because the deriva-

tives must act on the two external kaons, giving a factor of p2 which becomes m2
xy when the
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kaons are on-shell. This leads to the first analytic term: c1a
2m2

xy.

All of the analytic terms that are not proportional to powers of a2 are the same as

in the continuum partially quenched theory. The mass dependence of these terms can be

determined using CPS symmetry [42], where C and P are the usual charge conjugation and

parity reversal symmetries, respectively. In QCD, S corresponds to the exchange of d and

s quarks, however, in the mixed action lattice theory, we must impose a symmetry under

the interchange of x and y valence quarks instead: x ↔ y, mx ↔ my. There are only two

linearly independent O(m2
q) terms allowed by this symmetry; we choose to write them in the

forms c2m
4
xy ∝ c2(mx + my)

2 and c3(mx − my)
2. Operators of O(p2

PGBmq) only contribute

one new linear combination of masses: m2
xyTr(Msea), where Msea is the Nsea×Nsea sea quark

mass matrix.

Finally, operators of O(a2mq) can be shown to give no new independent contributions.

There are three possibilities for the quark mass dependence: (mx + my), (mx − my), and

Tr(Msea). The first term, a2(mx + my), is already included in c1, the second, a2(mx − my),

is forbidden by CPS symmetry, while the last term, a2Tr(Msea), vanishes for the following

reason. The factor Tr(Msea) always comes from the operator Str(ΣM †+MΣ†) when Σ = 1, so

the only operators that can lead to contributions of the form a2Tr(Msea) are O(a2) operators

multiplying Str(ΣM † + MΣ†). However, by chiral symmetry, the O(a2) operators cannot

generate tree-level contributions to MK . Therefore, the a2Tr(Msea) terms also vanish.

To summarize, the following analytic terms contribute to BK at NLO:

[
c1a

2m2
xy, c2m

4
xy, c3(m

2
X − m2

Y )2, c4m
2
xy(m

2
UP

+ m2
DP

+ m2
SP

)
]
. (44)

Note that we have re-expressed them in terms of meson masses, rather than quark masses,

because those are what one measures in a lattice simulation.

D. Next-to-Leading Order BK Results

In this section we present results for a “1+1+1” theory in which mu 6= md 6= ms in

the sea sector, for a “2+1” theory in which mu = md 6= ms in the sea sector, and for a

“full QCD”-like expression in which we tune the valence-valence meson masses equal to the

taste-singlet sea-sea meson masses.
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BK at NLO in the 1+1+1 PQ theory is

(
BK

B0

)PQ,1+1+1

= 1 +
1

16π2f 2
xym

2
xy

[
Iconn + I1+1+1

disc

]
+ c1a

2 + c2m
2
xy

+c3
(m2

X − m2
Y )2

m2
xy

+ c4(m
2
UP

+ m2
DP

+ m2
SP

) . (45)

The connected 1-loop contribution, Iconn, comes from evaluating the integral in Eq. (38):

Iconn = 2m4
xyℓ̃(m

2
xy) − ℓ(m2

X)(m2
X + m2

xy) − ℓ(m2
Y )(m2

Y + m2
xy), (46)

while the disconnected contribution, I1+1+1
disc , comes from evaluating the integral in Eq. (39):

I1+1+1
disc =

1

3
(m2

X − m2
Y )2 ∂

∂m2
X

∂

∂m2
Y

{
∑

j

ℓ(m2
j )

(
m2

xy + m2
j

)
R

[4,3]
j ({M

[4]
XY,I}; {µ

[3]
I })

}
. (47)

In the above expressions, ℓ and ℓ̃ are integrals regulated using the standard SχPT scheme

[19, 20]:

∫
d4q

(2π)4

1

q2 + m2
→

1

16π2
ℓ(m2), (48)

∫
d4q

(2π)4

1

(q2 + m2)2
→

1

16π2
ℓ̃(m2), (49)

One can completely account for lattice finite volume effects by turning the above integrals

into sums. This yields an additive correction to the chiral logarithms [43]:

ℓ(m2) = m2

(
ln

m2

Λ2
χ

+ δFV
1 (mL)

)
, δFV

1 (mL) =
4

mL

∑

~r 6=0

K1(|~r|mL)

|~r|
(50)

ℓ̃(m2) = −

(
ln

m2

Λ2
χ

+ 1

)
+ δFV

3 (mL), δFV
3 (mL) = 2

∑

~r 6=0

K0(|~r|mL) (51)

where the difference between the finite and infinite volume result is given by δFV
i (mL), and

K0 and K1 are modified Bessel functions of imaginary argument.

Finally, the residues and sets of meson masses that appear in the 1+1+1 disconnected

contribution are defined to be:

R
[n,k]
j ({m}, {µ}) ≡

∏k
a=1(µ

2
a − m2

j )∏
i6=j(m

2
i − m2

j )
, (52)

{M
[4]
XY,I} ≡ {mX , mY , mπ0

I

, mηI
},

{µ
[3]
I } ≡ {mUI

, mDI
, mSI

}. (53)
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and the mass eigenstates of the taste singlet flavor neutral PGB’s in the 1+1+1 case are7

m2
π0

I
,ηI

=
1

3

[
m2

UI
+ m2

DI
+ m2

SI
±

√
m4

DI
− (m2

UI
+ m2

SI
)m2

DI
+ m4

SI
+ m4

UI
− m2

SI
m2

UI

]
.

(54)

The expression in the 2+1 case is somewhat simpler:
(

BK

B0

)PQ,2+1

= 1 +
1

16π2f 2
xym

2
xy

[
Iconn + I2+1

disc

]
+ c1a

2 + c2m
2
xy

+c3
(m2

X − m2
Y )2

m2
xy

+ c4(2m
2
DP

+ m2
SP

) , (55)

where the connected term is the same as in the 1+1+1 case and the disconnected term is

I2+1
disc =

1

3
(m2

X − m2
Y )2 ∂

∂m2
X

∂

∂m2
Y

{
∑

j

ℓ(m2
j)

(
m2

xy + m2
j

)
R

[3,2]
j ({M

[3]
XY,I}; {µ

[2]
I })

}
, (56)

{M
[3]
XY,I} ≡ {mX , mY , mηI

},

{µ
[2]
I } ≡ {mDI

, mSI
}. (57)

When the up and down quark masses are degenerate, the flavor-neutral, taste-singlet mass

eigenstates are:

m2
π0

I

= m2
UI

= m2
DI

,

m2
ηI

=
m2

UI

3
+

2m2
SI

3
. (58)

The disconnected term also becomes simple enough that we choose to show it explicitly:

I2+1
disc =

1

3
(IX + IY + Iη) , (59)

with

IX = ℓ̃(m2
X)

(m2
xy + m2

X)(m2
DI

− m2
X)(m2

SI
− m2

X)

(m2
ηI
− m2

X)

−ℓ(m2
X)

[
(m2

xy + m2
X)(m2

DI
− m2

X)(m2
SI

− m2
X)

(m2
ηI
− m2

X)2
+

2(m2
xy + m2

X)(m2
DI

− m2
X)(m2

SI
− m2

X)

(m2
Y − m2

X)(m2
ηI
− m2

X)

+
(m2

DI
− m2

X)(m2
SI

− m2
X) − (m2

xy + m2
X)(m2

SI
− m2

X) − (m2
xy + m2

X)(m2
DI

− m2
X)

(m2
ηI
− m2

X)

]
, (60)

7 Strictly speaking, in the case where mu 6= md, the mass eigenstates of the flavor-neutral sector are not

the same as the physical states, π0

I
and ηI . Since the mixing between these two states is negligible (and

vanishes in the isospin limit), usually one does not make a distinction between the mass eigenstates and

the physical states.
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IY = IX(X ↔ Y ), (61)

Iη = ℓ(m2
η)

(m2
X − m2

Y )2(m2
xy + m2

ηI
)(m2

DI
− m2

ηI
)(m2

SI
− m2

ηI
)

(m2
X − m2

ηI
)2(m2

Y − m2
ηI

)2
. (62)

Note that all of the sea quark dependence appears in the disconnected terms, and that the

sum of these terms vanishes for degenerate valence quark masses. It is clear that Iη vanishes

when mX = mY , but it is not immediately obvious that the other terms go to zero. However,

it can be shown that in the limit that mX → mY , IX → −IY and thus the sum in Eq. (59)

vanishes as claimed.

Multiple definitions of the “full QCD” point appear in the mixed action χPT literature.

This is because the mixed Ginsparg-Wilson valence, staggered sea theory has no true full

QCD point at finite lattice spacing. Thus any choice of how to define the full QCD point

should be made for convenience. In this paper, we consider the two cases that most closely

resemble the full unquenched theory.

One possible way to define full QCD for the mixed action theory with 2+1 flavors is to

set mX = mDI
= mπ0

I

and mY = mSI
. On the lattice, this is nontrivial because it requires a

tuning of the bare valence masses in order to set the valence PGB masses to be those of the

taste-singlet sea PGB masses. This definition has the advantage, however, that the NLO

expression for BK looks very much like the continuum expression, except for the analytic

term proportional to a2. In this case, the expression for BK at NLO reduces to

(
BK

B0

)“full”

= 1 +
1

16π2f 2
xym

2
xy

[
2m4

xy ℓ̃(m
2
xy) +

1

2
(m2

X − 7m2
xy)ℓ(m

2
ηI

) −
1

2
(m2

X + m2
xy)ℓ(m

2
X)

]

+ c̃1a
2 + c2m

2
xy + c3

(m2
X − m2

Y )2

m2
xy

+ c̃4(2m
2
X + m2

Y ), (63)

where we have used the relationship m2
ηI

= (4m2
xy −m2

X)/3 which holds in this limit.8 This

clearly approaches the standard result as a → 0.

A popular, alternative way to define full QCD in MAχPT is to set the valence-valence

meson mass equal to the pseudoscalar taste sea-sea meson mass with the same quark content.

For perfect G-W valence quarks, this matching condition implies that the renormalized

valence quark mass equals the renormalized sea quark mass at tree level in χPT. This is the

8 Note that the coefficients c̃1 and c̃4 are different than those in Eqs. (45) and (55) because the mass-squared

of the taste-pseudoscalar meson and of the taste-singlet meson differ by a contribution of O(a2).
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matching condition most often used in mixed action lattice simulations since the Goldstone

pion mass vanishes in the chiral limit even at finite lattice spacing. Note that although it is

straightforward to set mval
ij = msea

ij in the χPT expressions, a lattice calculation using domain

wall fermions for the valence quarks would require a non-trivial tuning, since the coefficient

which renormalizes the bare domain wall mass is different from that which renormalizes the

bare staggered quark mass. The tuning for this case has been done on the MILC lattices

by the LHP Collaboration [44], and they find that the renormalization coefficients differ by

around 30%. Our formula for BK to NLO in MAχPT with this choice of tuning (to the

taste pseudoscalar) differs from the above tuning to the taste singlet by terms of order a2.

Because no simplification occurs compared to the most general formula, Eq. (45), we do not

present a new expression for the tuning to the taste pseudoscalar.

Given that the mixed action theory explicitly violates unitarity at finite lattice spacing,

there is no a priori reason for preferring one matching condition to another, and there are

numerous choices one could make. In the continuum limit, however, all of the matching

choices should be identical. At fixed lattice spacing, though, the two choices mentioned

above have their advantages and disadvantages. The advantage of matching to the taste

singlet is that the theory is described by the full continuum QCD formula (plus an a2 analytic

term), but the disadvantage is that the taste singlet has the largest mass of the 16 taste pions,

and on the MILC lattices this mass is still quite large. Matching to the taste pseudoscalar,

the lightest of the taste pions, then has the advantage of being closer to the physical pion

mass, but it has the disadvantage of having more complicated χPT expressions. However,

once the explicit χPT expressions exist, this is not much of a disadvantage. In fact, given

the complete partially quenched χPT expressions it is advantageous to not use any tuning

at all and to take advantage of additional partially quenched data points in order to best

constrain the unknown parameters in the chiral fit. This may not be true for all quantities,

especially those for which χPT is not a reasonable guide. In the following numerical analysis

we do not assume any matching condition has been chosen; we analyze the results of our

more general partially quenched formula.
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IV. NUMERICAL ILLUSTRATION OF MIXED ACTION CONTRIBUTIONS TO

BK

We plan on carrying out a mixed action numerical simulation of BK using domain wall

fermions on the publicly available MILC improved staggered ensembles; we therefore use the

known parameters and previous measurements on these lattices in order to obtain numerical

error estimates for BK using our χPT results. Currently there are two lattice spacings with

large statistics on these ensembles, the “coarse” MILC lattices with a ≈ 0.125 fm and

the “fine” lattices with a ≈ 0.09 fm. In this section we examine the modifications to the

continuum expression for BK that appear due to finite lattice spacing effects; these include

both taste-breaking errors from the staggered sea sector and finite volume errors.

The NLO expression for BK in a mixed action theory with 2 + 1 flavors of sea quarks

is given in Eq. (55). Discretization errors lead to two contributions – the shift in the

mass-squared of the taste-singlet sea-sea meson that appears in the 1-loop disconnected

contribution and the analytic term proportional to a2. Because we cannot a priori know

the value of the coefficients of the analytic terms, and because the O(a2) analytic term

does not arise purely from taste-violating operators, we will neglect analytic terms in this

numerical analysis of the size of taste-breaking contributions in BK . We choose to study

discretization errors on the a ≈ 0.125 fm “coarse” MILC lattices since taste violations will

be more pronounced than on the a ≈ 0.09 fm lattices. In particular, we use the parameters

of the ensemble with the lightest up and down sea quark masses on the smaller volume

(L/a = 20); this ensemble has a light quark mass of amsea
l = 0.007 and a strange quark

mass of amsea
s = 0.05.

In order to estimate the size of discretization errors in BK we calculate the percent

difference between the 1-loop contributions to BK with and without taste-breaking:

η =
B1−loop

K (mval
l , a2∆I) − B1−loop

K (mval
l , 0)

B1−loop
K (mval

l , 0)
. (64)

In this expression we have set the heavier valence bare quark mass to be equal to the sea

strange bare quark mass so that η is a function of the light valence quark mass, mval
l , and the

taste-singlet splitting, a2∆I . The taste singlet meson is the heaviest of all of the staggered

sea-sea mesons, and a2∆I is approximately (450 MeV)2 on the coarse lattices [11]. Because

the only sea-sea mesons that contribute to the BK at 1-loop in the mixed action theory
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FIG. 3: Percent difference between the 1-loop contributions to BK with and without taste-breaking

discretization errors, Eq. (64), as a function of valence light quark mass. The masses and taste

splittings are those of the MILC coarse ensemble (a = 0.125 fm) with aml = 0.007 and ams = 0.05.

The vertical line shows the physical light quark mass.

are taste-singlets, this large splitting makes the effective sea quark mass considerably larger

than a nominal light sea quark mass of ms/10 or ms/7 would suggest. On the fine lattices

this splitting is less, close to (280 MeV)2, which scales appropriately according to a2α2
s [11],

and this shows that it is necessary to approach the continuum limit in order to approach the

chiral limit in the sea sector. Note, however, that the sea quark dependence is predicted to

be small in the non-analytic contribution to our formulas. The sea quarks only contribute

to the disconnected hairpin diagrams in BK , and this is only around 15% of the connected

piece at the physical point. It will, however, be necessary to study the numerical data in

order to determine the size of the analytic contribution, as well as to test the validity of our

χPT formulas at the physical strange quark mass.

We plot the percent difference, Eq. (64), as a function of valence quark mass in Fig. 3,

setting a2∆I to be the value measured in MILC simulations on the coarse lattices [11]. In

this plot, the vertical line shows the location of the physical value of the average up/down

26



quark mass, mphys
l ≈ ms/27. One can see that for larger valence light masses, η rapidly

goes to zero. This is to be expected as the difference between the mass-squared of purely

valence and purely sea mesons will ultimately be negligible for sufficiently large quark masses.

At quark masses below mval
l ≈ 0.01 GeV, η begins to increase as the valence light mass

decreases, such that as mval
l → 0, the percent difference blows up rapidly. Note, however,

that this dramatic increase does not happen until below the physical mass, so in the region

of interest (mval
l ≥ 0.002 GeV) the error coming from taste violations is never higher than

0.5%. Note also that this estimate depends upon the value of the cutoff, Λχ, used (Fig. 3

uses Λχ = 1GeV), although any cutoff dependence can be absorbed into the analytic terms

which are not included in this numerical analysis. Varying Λχ within the range of 0.5 GeV

to 1.5 GeV changes this picture in the relevant light quark mass range only by a nearly

constant vertical shift at the half a percent level.

As for the analytic terms, if all terms up to NLO were included in Eq. (64) this ratio would

be explicitly independent of those analytic terms present in the continuum. The remaining

term which is proportional to a2 has been set to zero since we do not know a priori its value.

In our analysis, however, by choosing a non-zero value for c1, our plot in Fig. 3 would just

shift vertically by a nearly constant amount as a function of the quark mass in the region

of interest. If the scaling dependence of quenched domain wall fermions with various gauge

actions is any guide (see Fig. 7 of Ref. [45]), this term will give a contribution that is on

the order of a few percent.

We now repeat the above analysis, but include errors due to the finite spatial extent of the

lattice. Such finite volume effects can be quite noticeable at the lightest sea quark masses

available on the MILC configurations. One might imagine that the finite volume effects in

the mixed case would not be very different than the continuum case, since the taste violating

effects only enter through the taste singlet meson, which has a large mass. In actuality, this is

precisely where there could be a problem, since the heavy singlet mass appears only in the sea

sector. Partially quenched pathologies begin to appear when mval
π < msea

π .9 Consequently, if

the sea mesons are significantly heavier than the valence mesons (as they are in the mixed

action theory) these pathologies may become more pronounced. We will see that this is, in

fact, the case.

9 See, for example, Ref. [46].
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FIG. 4: Percent difference in the 1-loop contributions to BK in finite and infinite volume, Eq. (65),

as a function of valence light quark mass. The dashed curve corresponds to ηFV with a2∆I = 0

(the continuum case), and the solid curve shows ηFV with a2∆I set to its value on the coarse

(a = 0.125 fm) MILC lattices. The sea quark masses are aml = 0.007 and ams = 0.05, and the

spatial extent of the lattice is L = 20.

In analogy with Eq. (64), we define ηFV to be the percent difference between the 1-loop

contribution to BK in the mixed theory at finite volume and BK in the mixed theory at

infinite volume, both including discretization errors:

ηFV (mval
l , a2∆I) =

B1−loop,FV
K (mval

l , a2∆I , L) − B1−loop
K (mval

l , a2∆I)

B1−loop
K (mval

l , a2∆I)
. (65)

We evaluate the above expression at a spatial lattice size of L = 20; the remaining parameters

are the same as in the previous analysis. We then plot in Fig. 4 two curves – the dashed

curve shows the percent difference in Eq. (65) for the continuum limit, ηFV (mval
l , 0), while

the solid curve shows the same percent difference with a2∆I set to its value on the coarse

MILC lattices. Again, the vertical line indicates the physical light quark mass.

One can see that, for the region mval
l ≥ 0.01 GeV, the error associated with finite volume

effects, while not negligible, is quite small, of O(1%) or less. Although the continuum and
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finite lattice spacing cases are different, in each instance finite volume effects are small. As

the valence light quark mass drops below the sea light quark mass, the error shoots up

rapidly, which is expected because quenching artifacts (where finite volume effects are more

pronounced) become more noticeable in this region. As discussed above, the mixed case

sees these quenching artifacts at a larger valence mass, since the sea mesons are heavier.

Although one might worry about this significant difference between the continuum and the

mixed cases for the lighter masses (the difference is rather striking at the physical mass),

this is not a practical problem. For example, the MILC ensemble with a light sea quark mass

of amsea
l = 0.005 has a spatial length of L = 24 as opposed to 20 for the heavier sea quark

mass ensembles. This increase in volume for the lighter quark mass was chosen by MILC to

reduce finite volume effects for such a light sea quark mass [2]. In our planned simulations of

BK , the quantity which we wish to keep large is the combination mval
π L, which as a general

rule-of-thumb should be 4 or more to keep the finite volume effects relatively small.10 Note

though, that in Fig. 4, the renormalized valence quark mass mval
l = 0.01 GeV, and with

L=20 this corresponds to an mπL ≈ 3, leading to a finite volume relative error of about

1.5%. As the valence quark mass (and thus the valence pion mass) decreases, this error goes

up rapidly. If we want to go to lighter quark masses, we will need to use the MILC lattices

with larger volume (L=24) so that mval
π L does not become significantly smaller than 3, and

the finite volume corrections stay below the 2% level. The key point is that simulations are

done to the right of this “wall” in Fig. 4 at which the error explodes, so one can correct for

finite volume errors before performing extrapolations to the continuum and physical light

quark mass.

V. CONCLUSIONS

In this work we have calculated the expression for BK in a mixed action lattice theory

with Ginsparg-Wilson valence quarks and staggered sea quarks to next-to-leading order in

chiral perturbation theory. We have discussed in some detail how to extend the continuum

10 Although finite volume χPT at can be used to correctly describe more significant finite size errors, if the

removable 1-loop finite volume corrections to BK are around 15%, then it is likely that the remaining

2-loop finite volume errors will still be a few percent. Such a large systematic uncertainty from finite size

effects is unacceptable if one is aiming for an overall error of 5% in BK .
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calculation to the mixed action case, and we have provided expressions for both a “1+1+1”

partially quenched theory (mu 6= md 6= ms) and a “2+1” partially quenched theory (mu =

md 6= ms), both of which reduce to the corresponding partially quenched QCD expressions

in the continuum limit.

It is illustrative to compare our expression for BK in mixed action chiral perturbation

theory to that for other lattice theories. Four parameters are needed to describe BK in the

continuum: one leading order constant, B0, and three NLO coefficients. In the case of pure

Ginsparg-Wilson lattice fermions, the expression for BK contains one additional coefficient

proportional to a2. For domain-wall lattice fermions there is an additional constant, mres,

which comes from chiral symmetry breaking due to the finite domain wall separation. This

term simply enters BK as an additive shift to the quark mass and can be separately measured

in a tree-level fit to the pion mass-squared. In the mixed action lattice theory with staggered

sea quarks and domain wall valence quarks that we have considered here, taste-symmetry

breaking effects produce an additive shift to the sea-sea meson mass squared. This is the

only new term that appears in the calculation of BK with domain-wall quarks on a staggered

sea as compared to a pure domain-wall calculation. In contrast, the expression for BK with

staggered valence quarks on a staggered sea contains many new parameters, each of which

must be determined from lattice simulations and subsequently removed in order to extract

the value of BK in the continuum. It is interesting to note that the expression for BK in the

mixed G-W, staggered lattice theory is no more complicated than that for a domain-wall

simulation in which a different value of the domain-wall separation is used in the valence and

sea sectors; such a “mixed” domain-wall simulation was previously proposed in Ref. [47]. In

this case the value of mres would differ in the valence and sea sectors, and the corresponding

expression for BK could be gotten from our expression, Eq. (45), by simply making the

replacements mres → mvalence
res and a2∆I → msea

res . Thus the taste-singlet sea-sea meson mass

shift can be thought of as an effective mres in the sea sector, though this effective “mres”

scales as a2, and consequently vanishes in the continuum limit.

Finally, we have presented a numerical analysis of the resulting expressions in which we

have examined the size of discretization errors from taste-symmetry breaking in the sea

sector and finite volume errors for the MILC coarse (a ≈ 0.125 fm, L=20 and 24) lattice

ensembles. We find that the non-analytic taste-breaking contributions to BK in the mixed

action theory are around 0.5% over the range of the extrapolation and so are quite small. The
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finite volume effects are somewhat larger for the mixed action case than in the continuum,

but still remain at or below the 2%- level for the values of the light quark masses used to

generate the MILC ensembles. It will of course be necessary to study the numerical lattice

data in order to determine the size of the analytic contribution, as well as to test the validity

of our NLO χPT formulas at the physical strange quark mass.

A lattice calculation of BK using domain-wall valence quarks on top of improved stag-

gered field configurations combines the best properties of both fermion discretizations. This

method will be competitive with other established methods for calculating BK , and ulti-

mately it should give a useful constraint on the CKM matrix and phenomenology.
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